

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-25/0651 vom 8. September 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Alfa Betonschraube

Mechanische Dübel zur Verankerung im Beton

Alfa GmbH
Ferdinand-Porsche-Straße 10
73479 Ellwangen
DEUTSCHLAND

Werk 3, D

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 05/2021

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z205647.25 | 8.06.01-289/25

Seite 2 von 19 | 8. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 19 | 8. September 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Alfa Betonschraube ist ein Dübel in den Größen 6, 8, 10, 12 und 14 mm aus galvanisch verzinktem bzw. zinklamellenbeschichtetem Stahl, aus nichtrostendem oder hochkorrosionsbeständigem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes. Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Widerstände unter Zugbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang B2 und C1
Charakteristische Widerstände unter Querbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang C1
Verschiebungen (statische und quasi-statische Lasten)	Siehe Anhang C6
Charakteristische Widerstände und Verschiebungen für die seismische Leistungskategorie C1 und C2	Siehe Anhang C2 bis C4 und C7

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C5

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

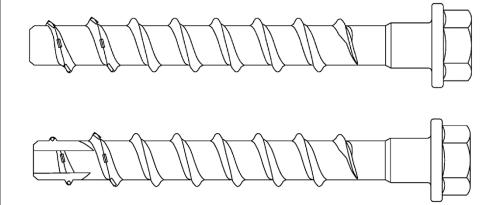
Seite 4 von 19 | 8. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

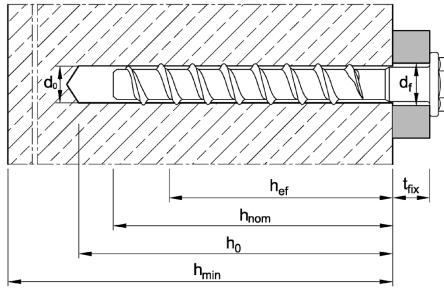
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 8. September 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Andreas Kummerow Abteilungsleiter Beglaubigt Baderschneider


Alfa Betonschraube

Alfa Betonschraube: verzinkt Edelstahl A4 HCR

Einbauzustand in Beton

(z.B. Alfa Betonschraube mit Sechskantkopf und angepresster Unterlegscheibe)

Bohrernenndurchmesser
 effektive Verankerungstiefe
 nominelle Einschraubtiefe

 h_0 = Bohrlochtiefe

 h_{min} = Mindestbauteildicke t_{fix} = Dicke des Anbauteils

d_f = Durchmesser des Durchgangs-

lochs im Anbauteil

Alfa Verfüllscheibe VS und Mischerreduzierung

zum Verfüllen des Ringspalts zwischen Betonschraube und Anbauteil

Dicke der Verfüllscheibe t = 5 mm

Alfa Betonschraube

Produktbeschreibung

Produkt und Einbauzustand

Anhang A1

	Ausführung		Alfa Betonschraube	Beschreibung
1		0	IS-M-V	Ausführung mit metrischem Anschlussgewinde und Innensechskant
2		\circ	SW-M-E	Ausführung mit metrischem Anschlussgewinde und Sechskantantrieb
3		(\$5.20)	SKK-TG-V TX	Ausführung mit Sechskantkopf, angepresster Unterlegscheibe und TORX-Antrieb
4		(8 °)	SKK-TG-V	Ausführung mit Sechskantkopf und angepresster Unterlegscheibe
5		(B) C)	SKKBU-TG-V	Ausführung mit Sechskantkopf und Bund
6		(% S.2)	SKK	Ausführung mit Sechskantkopf
7		(852) (352)	SK-TG-V	Ausführung mit Senkkopf und TORX-Antrieb
8		(\$52) (\$0)	LK-TG-V	Ausführung mit Linsenkopf und TORX-Antrieb
9		(\$\$? (\$\frac{1}{2}\),	GLK-TG-V	Ausführung mit großem Linsenkopf und TORX-Antrieb
10			SK-M-V	Ausführung mit Senkkopf und metrischem Anschlussgewinde
11			StS-M-V	Ausführung mit Sechskantantrieb und metrischem Anschlussgewinde
12			Mf-IG-V	Ausführung mit Innengewinde und Sechskantantrieb

Alfa Betonschraube	
Produktbeschreibung Ausführungen und Benennung	Anhang A2

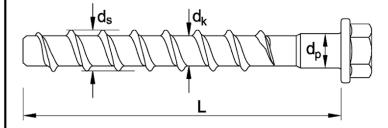


Tabelle A2: Abmessungen

Alfa Betonschraube			Schraubengröße													
Alia betorischraube			•	6	8			10			12					
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75 85		65 85 100		75 100 1		115	
Schraubenlänge	L≤	[mm]	500													
Kerndurchmesser	d_{k}	[mm]	5	5,1 7,1							11,1			13,1		
Außendurchmesser	ds	[mm]	7,5 10,6				12,6 14,6				16,6					
Schaftdurchmesser	dр	[mm]	5	,7	7,9		9,9		11,7			13,7				

Prägung

oder TSM 10 100

♦ BSZ oder TSM

Dübelbezeichnung (ggf. mit Herstellerkennung 🔷)

10 Schraubengröße

100 Schraubenlänge

Zusätzliche Kennungen:

HCR

nichtrostender Stahl

hochkorrosionsbeständiger Stahl

BC ST Ausführung mit

Sechskantkopf und Bund

Tabelle	A3:	Werkstoffe

Ausführung	Stahl, verzinkt Alfa Betonschraube verzinkt Edelstahl								
Material	Stahl EN 10263-4:2017 galvanisch verzinkt nach EN ISO 4042:2018 oder zinklamellenbeschichtet nach EN ISO 10683:2018 (≥ 5μm)	1.4401, 1.4404, 1.4571, 1.4578	1.4529						
Nominelle charakteristische Streckgrenze f _{yk}	560 N/mm²								
Nominelle charakteristische Zugfestigkeit f _{uk}	700 N/mm²								
Bruchdehnung As		≤ 8%							

Alfa Betonschraube	
Produktbeschreibung Abmessungen, Prägungen und Werkstoffe	Anhang A3

Spezif	Spezifizierung des Verwendungszwecks														
A Ifa D	ata na abrauba					Sc	hrau	benç	größ	е					
Alia B	etonschraube	6			8			10			12			14	
Nomin	elle Einschraubtiefe h _{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
б	Statische oder quasi-statische Beanspruchung	✓													
I	Brandbeanspruchung	✓													
der Verank	Seismische Beanspruchung C1 (verzinkt, A4, HCR)	Zugbeanspruchung: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, SK-TG-V, LK-TG-V, GLK-TG-V, SK-M-V, StS-M-V, Mf-IG-V Querbeanspruchung: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, SK-TG-V, LK-TG-V, GLK-TG-V													
l gu		 	•	1	1)	✓	✓	1)	✓	1)	✓	1)	✓
Beanspruchung der Verankerung	Seismische Beanspruchung C2 (verzinkt)	Zug- und Querbeanspruchung: mit Ringspaltverfüllung: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, LK-TG-V, GLK-TG-V ohne Ringspaltverfüllung: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, SK-TG-V ²⁾ , LK-TG-V, GLK-TG-V													
rund	Gerissener oder ungerissener Beton						<u> </u>	✓		<u> </u>					
ankerungsgrund	Bewehrter oder unbewehrter Beton (ohne Fasern) nach EN 206:2013+A1:2016	✓													
뚩	Festigkeitsklassen														

¹⁾ Keine Leistung bewertet

C20/25 bis C50/60

nach EN 206:2013+A1:2016,

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: alle Materialien
- Für alle anderen Bedingungen entsprechend der Korrosionsbeständigkeitsklassen CRC gemäß EN 1993-1-4:2006+A1:2015:
 - nichtrostender Stahl A4, nach Anhang A3, Tabelle A3: CRC III
 - hochkorrosionsbeständiger Stahl HCR, nach Anhang A3, Tabelle A3: CRC V

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.)
- Die Bemessung von Verankerungen erfolgt in Übereinstimmung mit EN 1992-4:2018 (ggf. in Verbindung mit EOTA Technical Report TR 055, Fassung Februar 2018)

Einbau:

- Bohrlocherstellung durch Hammerbohren oder Saugbohren.
 Bei Verwendung eines Saugbohrers ist keine Bohrlochreinigung erforderlich.
- Einbau durch entsprechend geschultes Personal und unter der Verantwortung des Bauleiters.
- Nach der Montage ist ein leichtes Weiterdrehen des Dübels nicht möglich. Der Schraubenkopf liegt am Anbauteil an und darf nicht beschädigt sein.
- Das Bohrloch darf mit den Injektionssystemen VME plus gefüllt werden.
- Adjustierung nach Anhang B5 (ausgenommen Anwendungen mit verfülltem Bohrloch und Anwendungen mit seismischer Beanspruchung).

Alfa Betonschraube	
Verwendungszweck Spezifikationen	Anhang B1

²⁾ Ausführung SK-TG-V, Größe 8 und Größe 10

Tabelle B1: Montageparameter

Alfa Betonschraube			Schraubengröße													
Alia Betonschraube			6 8			10			12			14				
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Bohrernenndurchmesser	d ₀	[mm]	6		8		10		12		14					
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,	40		8,45			10,45	;		12,50)		14,50	
Effektive Verankerungstiefe	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Bohrlochtiefe	h₀≥	[mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	8	3		12			14			16			18	
Installationsmoment für Schrauben mit metrischem Anschlussgewinde	T _{inst} ≤	[Nm]	10		20			40			60		80			
Tangential-Schlagschrauber ¹⁾	T _{imp,max}	[Nm]	16	30		300			400		650		650			

¹⁾ Einbau mit Tangential-Schlagschrauber mit maximaler Leistungsabgabe T_{imp,max} gemäß Herstellerangabe möglich

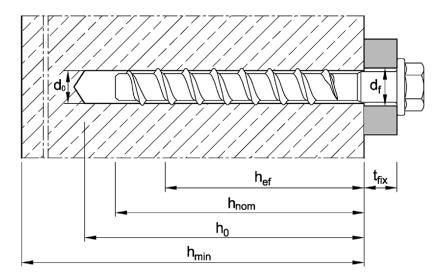


Tabelle B2: Mindestbauteildicke, minimale Achs- und Randabstände

Alfa Betonschraube			Schraubengröße													
			6 8			10			12			14				
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Mindestbauteildicke	h_{min}	[mm]	100		100		120	100	13	30	120	130	150	130	150	170
Minimaler Achsabstand	Smin	[mm]	40		40	5	0		50		5	0	70	50	7	0
Minimaler Randabstand	C _{min}	[mm]	4	40		5	0	50		50		70	50	7	0	

Alfa Betonschraube	
Verwendungszweck Montageparameter / Mindestbauteildicke, minimale Achs- und Randabstände	Anhang B2

Montageanweisung **Bohrlocherstellung und Reinigung** Bohrloch senkrecht zur Oberfläche des Verankerungsgrundes 1 erstellen. Bei Verwendung eines Saugbohrers mit Schritt 3 fortfahren. Bohrloch vom Grund her ausblasen oder aussaugen. 2 Montage Alfa Betonschraube T_{inst} 3 Einschrauben mit Schlagschrauber oder Ratsche. Der Schraubenkopf liegt am Anbauteil an und darf nicht beschädigt 4 sein.

Alfa Betonschraube	
Verwendungszweck Montageanweisung	Anhang B3

Alfa Betonschraube

Montageanweisung - Adjustierung

Verwendungszweck

Montageanweisung – Adjustierung 1. Adjustierung max. 10mm 5 Die Schraube darf maximal 10mm gelöst werden. $\mathbf{T}_{\mathsf{inst}}$ Nach Adjustierung die Schraube mit Schlagschrauber oder Ratsche wieder 6 eindrehen. Der Schraubenkopf muss am Anbauteil anliegen und darf nicht beschädigt 7 sein. ≥ hnom 2. Adjustierung max. 10mm 8 Die Schraube darf maximal 10mm gelöst werden. max. 10mm T_{inst} Nach Adjustierung die Schraube mit Schlagschrauber oder Ratsche wieder 9 eindrehen. Der Schraubenkopf muss am Anbauteil anliegen und darf nicht beschädigt 10 sein. Hinweis: Der Dübel darf max. 2x adjustiert werden. Dabei darf der Dübel jeweils max. um 10 mm zurückgeschraubt werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10 mm betragen. Die erforderliche Setztiefe h_{nom} muss nach der Adjustierung noch eingehalten sein.

Z205643.25 8.06.01-289/25

Anhang B4

Montageanweisung - Ringspaltverfüllung **Bohrlocherstellung und Reinigung** Bohrloch senkrecht zur Oberfläche des Verankerungsgrundes erstellen. 1 Bei Verwendung eines Saugbohrers mit Schritt 3 fortfahren. 2 Bohrloch vom Grund her ausblasen oder aussaugen. Montage Alfa Betonschraube mit Alfa Verfüllscheibe VS Verfüllscheibe an Betonschraube montieren. 3 Die Dicke der Verfüllscheibe muss bei t_{fix} berücksichtigt werden. $\mathbf{T}_{\mathsf{inst}}$ 4 Einschrauben mit Schlagschrauber oder Ratsche. Ringspalt zwischen Betonschraube und Anbauteil mit Mörtel verfüllen (Druckfestigkeit ≥ 40 N/mm², z.B. 292 Alfa Injektionsmörtel). Beiliegende Mischerreduzierung verwenden. Verarbeitungshinweise des 5 Mörtels beachten! Der Ringspalt ist komplett verfüllt, wenn aus dem Loch der Verfüllscheibe Mörtel austritt. Für seismische Beanspruchung ist die Anwendung mit und ohne Ringspaltverfüllung zugelassen (Anhang C3-C4).

Alfa Betonschraube	
Verwendungszweck Montageanweisung - Ringspaltverfüllung	Anhang B5

Tabelle C1: Charakteristische	Werte bei statischer oder d	quasi-statischer Beanspruchung
Tabelle 91. Charakteristische	vicite bei statischer oder v	quasi-statiscrici bearispractially

Alfa Betonschraube							Sch	raub	engr	öße						
Alta Betonschraube			6	5		8			10			12			14	
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Montagebeiwert	γinst	[-]							1,	0						
Zugbeanspruchung																
Stahlversagen																
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	1	4		27			45			67			94	
Teilsicherheitsbeiwert	γMs,N	[-]							1,	5			'			
Herausziehen																
Charakteristischer gerissen	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12	9,0	≥ N ⁰ i	Rk,c ¹⁾	12					
Widerstand in Beton C20/25 ungerissen	N _{Rk,p}		4,0	9,0	7,5	12	16	12	20	26	16	≥ N ⁰	Rk,c ¹⁾	≥	N^0 Rk,	,1)
Erhöhungsfaktor für $N_{Rk,p}$ $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	Ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$													
Betonausbruch																
Effektive Verankerungstiefe	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Achsabstand	Scr,N	[mm]							3 ł	1 _{ef}						
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef}													
Faktor k ₁ gerissen ungerissen	k _{cr,N}	[-]	7,7 11,0													
Spalten	ruoi,iv									,,,						
Charakteristischer Widerstand	N ⁰ Rk,sp	[kN]						min [N _{Rk,p}	, N ⁰ R	k,c ¹⁾]					
Achsabstand	Scr,sp	[mm]	120	160	120	140							240	180	240	280
Randabstand	C _{cr,sp}	[mm]	60	80	60	70	75	70	90	105	75	105	120	90	120	140
Querbeanspruchung																
Stahlversagen <u>ohne</u> Hebelarr	n															
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	7,	0	13	,5	17,0	22,5	34	,0	33,5	42	2,0		56,0	
Teilsicherheitsbeiwert	γMs,V	[-]							1,2	25						
Duktilitätsfaktor	k ₇	[-]							0,	8						
Stahlversagen <u>mit</u> Hebelarm																
Charakteristischer Biegewiderstand	M ⁰ Rk.s	[Nm]	10	,9		26			56			113			185	
Betonausbruch auf der lastat	gewan	dten S	eite													
Pry-out Faktor	k 8	[-]	1,	0		1,0		1,0	2,	0	1,0	2	,0	1,0	2,	0
Betonkantenbruch																
Wirksame Dübellänge	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Wirksamer Außendurchmesser	d _{nom}	[mm]	6	6		8			10			12			14	
⁾ N ⁰ _{Rk,c} nach EN 1992-4:2018																

Alfa Betonschraube

Leistung Charakteristische Werte bei statischer oder quasi-statischer Beanspruchung Anhang C1

Tabelle C2: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1

								•			
Alfa Betonschraube						hraub					
			40		8		0	12	14		
Nominelle Einschraubtiefe	h _{nom}		40	55	65	55	85	100	115		
Montagebeiwert	γinst	[-]				1	,0				
Zugbeanspruchung Ausführungen: IS-M-V, SW-M-E StS-M-V, Mf-IG-V	:, SKK- TG	G-V TX,	SKK-	TG-V,	SKK, SK-TG	i-V, LK	-TG-V	, GLK-TG-V,	SK-M-V,		
Stahlversagen											
Charakteristischer Widerstand	$N_{\text{Rk,s,C1}}$	[kN]	1	4	27	4	5	67	94		
Teilsicherheitsbeiwert	γMs	[-]				1	,5				
Herausziehen											
Charakteristischer Widerstand	$N_{Rk,p,C1}$	[kN]	2,0	4,0	12	9,0		$\geq N^0_{Rk,c}$	1)		
Betonausbruch											
Effektive Verankerungstiefe	h _{ef}	[mm]	31	44	52	43	68	80	92		
Achsabstand	S _{cr,N}	[mm]	3h _{ef}								
Randabstand	C _{cr,N}	[mm]	1,5h _{ef}								
Querbeanspruchung Ausführungen: IS-M-V, SW-M-E	, SKK-TO	G-V TX,	SKK-	ΓG-V,	SKK, SK-TG	i-V, LK	-TG-V	, GLK-TG-V			
Stahlversagen <u>ohne</u> Hebelarm											
Charakteristischer Widerstand	$V_{\text{Rk},\text{s},\text{C1}}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4		
Teilsicherheitsbeiwert	γMs	[-]				1,:	25				
Betonausbruch auf der lastabg	ewandter	n Seite									
Pry-out Faktor	k ₈	[-]			1,0			2,0			
Betonkantenbruch											
Wirksame Dübellänge	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92		
Wirksamer Außendurchmesser	d _{nom}	[mm]	6	3	8	1	0	12	14		
Faktor für Ringspaltverfüllung											
<u>mit</u> Ringspaltverfüllung (gemäß Anhang B5, Bild 5)	αgap	[-]	1,0								
<u>ohne</u> Ringspaltverfüllung (gemäß Anhang B3)	$lpha_{\sf gap}$	[-]				0	,5				

 $^{^{1)}\,\}mathrm{N^0}_{\mathrm{Rk,c}}$ für Betonfestigkeitsklasse C20/25, nach EN 1992-4:2018

Alfa Betonschraube	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1	Anhang C2

Tabelle C3: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C2, mit Ringspaltverfüllung, Alfa Betonschraube, verzinkt

Alfa Betonschraube			Schraubengröße							
Ana Betonschraube			8	10	12	14				
Nominelle Einschraubtiefe	h_{nom}	[mm]	65	85	100	115				
Montagebeiwert	γinst	[-]		1,	0					
Zugbeanspruchung Ausführungen: IS-M-V, SW-M-E, S	SKK-TG-V TX	(, SKK- 1	ΓG-V, SKK, LK	K-TG-V, GLK-T	·G-V					
Stahlversagen										
Charakteristischer Widerstand	N _{Rk,s.C2}	[kN]	27	45	67	94				
Teilsicherheitsbeiwert	γMs	[-]		1,	5	•				
Herausziehen										
Charakteristischer Widerstand	N _{Rk,p.C2}	[kN]	2,4	5,4	7,1	10,5				
Betonausbruch										
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92				
Achsabstand	Scr,N	[mm]		3 h _{ef}						
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef}							
Querbeanspruchung Ausführungen: IS-M-V, SW-M-E, S	SKK-TG-V TX	K, SKK-⊺	TG-V, SKK, LK	(-TG-V, GLK-1	G-V					
Stahlversagen ohne Hebelarm										
Charakteristischer Widerstand	V _{Rk,s.C2}	[kN]	9,9	18,5	31,6	40,7				
Teilsicherheitsbeiwert	γMs	[-]		1,:	25					
Betonausbruch auf der lastabgew	vandten Seit	е								
Pry-out Faktor	k 8	[-]	1,0		2,0					
Betonkantenbruch										
Wirksame Dübellänge	I _f = h _{ef}	[mm]	52	68	80	92				
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	12	14				
Faktor für Ringspaltverfüllung										
<u>mit</u> Ringspaltverfüllung (gemäß Anhang B5, Bild 5)	$lpha_{\sf gap}$	[-]		1,	0					

Alfa Betonschraube	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Kategorie C2 mit Ringspaltverfüllung	Anhang C3

Tabelle C4: Charakteristische Werte bei **seismischer Beanspruchung**, Kategorie **C2**ohne Ringspaltverfüllung, Alfa Betonschraube, verzinkt

				Calamanda								
Alfa Betonschraube			•		engröße	4.4						
Naminalla Finankasuktista	la la	[8	10	12	14						
Nominelle Einschraubtiefe	h _{nom}	[mm]	65	85	100	115						
Montagebeiwert	γinst	[-]		1	,0							
Zugbeanspruchung												
Stahlversagen Ausführungen: IS-M-V, SW-M-E, SI	KK-TG-V TX	K, SKK-	TG-V, SKK, LK	K-TG-V, GLK-	rg-v							
Charakteristischer Widerstand	N _{Rk,s.C2}	[kN]	27	45	67	94						
Teilsicherheitsbeiwert	γMs	[-]		1	,5							
Herausziehen Ausführungen: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, LK-TG-V, GLK-TG-V												
Charakteristischer Widerstand	$N_{Rk,p.C2}$	[kN]	2,4	5,4	7,1	10,5						
Stahlversagen Ausführung: SK-T	G-V											
Charakteristischer Widerstand	$N_{\text{Rk,s.C2}}$	[kN]	27	45	keine Loistu	na howartat						
Teilsicherheitsbeiwert	γMs	[-]	1	,5	keine Leistung bewertet							
Herausziehen Ausführung: SK-TG	6-V											
Charakteristischer Widerstand	N _{Rk,p.C2}	[kN]	2,4	5,4	keine Leistu	ng bewertet						
Betonausbruch Ausführungen: IS-M-V, SW-M-E, S	KK-TG-V TX	(, SKK-	TG-V, SKK, LF	K-TG-V, GLK-	ΓG-V							
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92						
Achsabstand	S _{cr,N}	[mm]		3	h _{ef}							
Randabstand	C _{cr,N}	[mm]		1,5	i h _{ef}							
Querbeanspruchung												
Stahlversagen <u>ohne</u> Hebelarm Ausführungen: IS-M-V, SW-M-E, S	KK-TG-V TX	(, SKK- ⁻	TG-V, SKK, LF	K-TG-V, GLK-	ΓG-V							
Charakteristischer Widerstand	$V_{Rk,s.C2}$	[kN]	10,3	21,9	24,4	23,3						
Teilsicherheitsbeiwert	γMs	[-]		1,	25							
Stahlversagen <u>ohne</u> Hebelarm Au	ısführung:	SK-TG-	V									
Charakteristischer Widerstand	V _{Rk,s.C2}	[kN]	3,6	13,7	keine Leistu	ng bewertet						
Teilsicherheitsbeiwert	γMs	[-]	1,	25	Vellie Feisin	ing beweitet						
Betonausbruch auf der lastabgewa Ausführungen: IS-M-V, SW-M-E, S			TG-V, SKK, LF	K-TG-V, GLK-								
Pry-out Faktor	k ₈	[-]	1,0		2,0							
Betonkantenbruch Ausführungen: IS-M-V, SW-M-E, S	KK-TG-V TX	(, SKK-	TG-V, SKK, LK	K-TG-V, GLK-	ГG-V							
Wirksame Dübellänge	I _f = h _{ef}	[mm]	52	68	80	92						
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	12	14						
Faktor für Befestigungen <u>ohne</u> Ringspaltverfüllung	lphagap	[-]		0	,5							

Alfa Betonschraube	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Kategorie C2 ohne Ringspaltverfüllung	Anhang C4

Tabelle C5: Charakteristische Werte unter Brandbeanspruchung

Alfa Betonschraube					Schraubengröße											
					8		10			12			14			
Nominelle Einschraubtiefe h _{nom} [mm]						55	65	55	75	85	65	85	100	75	100	115
Stahlversagen (Zug- und Quertragfähigkei																
R30		[kN]	0,9		2,4		4,4			7,3		10,3		}		
R60	N _{Rk,s,fi}		0,8		1,7		3,3		5,8		8,2					
R90	$V_{Rk,s,fi}$		0,6		1,1		2,3		4,2		5,9					
R120	-		0,4		0,7		1,7		3,4		4,8					
Hebela	rm															
R30		[Ni1	0,7			2,4		5,9		12,3		20,4				
R60	N/O		0,6		1,8		4,5		9,7		15,9)			
R90	- IVI°Rk,s,fi	[INITI]	0,5			1,2			3,0		7,0		11,6		5	
R120	-		0	,3		0,9			2,3			5,7			9,4	
	C _{cr,fi}	[mm]	2 h _{ef}													
eanspruc	hung betra	ägt der	Ranc	labsta	and ≥	300	mm									
	S cr,fi	[mm]	4 h _{ef}													
	R30 R60 R120 R40 R120 R60 R60 R60 R90 R120	R30 R60 R120 R30 R60 R120 R120 R2 R4 R4 R50 R60 R60 R90 R120 R120 Ccr,fi R60	nubtiefe h _{nom} [mm] Ig- und Quertragfähigkei R30 R60 R90 VRk,s,fi R120 Hebelarm R30 R60 R90 R120 Ccr,fi [mm] eanspruchung beträgt der	Rad	Contact Cont	Cor, fi Cor	Rad	Radio Rad	Name	Robe Robe	R30	R30	New New	R30	R30	R30

Die charakteristischen Widerstände für Herausziehen $N_{Rk,p,fi}$, Betonausbruch $N^0_{Rk,c,fi}$, Betonausbruch auf der lastabgewandten Seite $V_{Rk,cp,fi}$ und Betonkantenbruch $V^0_{Rk,c,fi}$ können nach EN 1992-4:2018 berechnet werden.

Im nassen Beton ist die Verankerungstiefe im Vergleich mit den angegebenen Werten um mindestens 30 mm zu erhöhen.

Alfa Betonschraube

Leistung

Charakteristische Werte unter Brandbeanspruchung

Anhang C5

Tabelle C6: Verschiebung unter statischer oder quasi-statischer Belastung

Δlfal							Scl		engrö	ße							
Alla	Betonschraube			6 8			10			12			14				
Nomi Einsc	nelle chraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Zugb	Zugbeanspruchung																
ē	Zuglast	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	5,7	9,4	12,3	7,6	12,0	15,1
gerissener Beton	Vereshiehung	δνο	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	0,9	0,5	1,0	0,5	0,8	0,7
ge	Verschiebung	δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
ner	Zuglast	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	7,6	13,2	17,2	10,6	16,9	21,2
ungerissener Beton	Verschiebung	δνο	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	1,0	1,1	1,2	0,9	1,2	0,8
bun	verscriebung	$\delta_{N\infty}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
Querbeanspruchung																	
	Querlast	V	[kN]	3,	,3		8,6			16,2			20,0			30,5	
Vorachi	Verschiebung		[mm]	1,	55		2,7		2,7		4,0		3,1				
	Versomebung	δν∞	[mm]	3,	,1		4,1		4,3		6,0		4,7				

Alta	Beto	nscl	nrai	ıbe

Leistung

Verschiebungen unter statischer oder quasi-statischer Beanspruchung

Anhang C6

Tabelle C7: Verschiebung unter seismischer Beanspruchung Kategorie C2 mit Ringspaltverfüllung, Alfa Betonschraube, verzinkt

Alfa Betonschraube	Schraubengröße								
Alia Betolisciliaube	8	10	12	14					
Nominelle Einschraubtiefe	h _{nom}	[mm]	65	85	100	115			
Zugbeanspruchung									
Ausführungen: IS-M-V, SW-M-E, SKK-T	G-V TX	, SKK-1	G-V, SKK, LK	-TG-V, GLK-T	G-V				
Verschiebung DLS δ _t	N,C2(DLS)	[mm]	0,66	0,32	0,57	1,16			
Verschiebung ULS δ _t	N,C2(ULS)	[mm]	1,74	1,36	2,36	4,39			
Querbeanspruchung									
Ausführungen: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, LK-TG-V, GLK-TG-V (mit Durchgangsloch)									
Verschiebung DLS δ	V,C2(DLS)	[mm]	1,68	2,91	1,88	2,42			
Verschiebung ULS δ	V,C2(ULS)	[mm]	5,19	6,72	5,37	9,27			

Tabelle C8: Verschiebung unter seismischer Beanspruchung Kategorie C2
ohne Ringspaltverfüllung, Alfa Betonschraube, verzinkt

Alfa Betonschraube	Schraubengröße								
Alia Betoliscillaube			8	10	12	14			
Nominelle Einschraubtiefe	h _{nom}	[mm]	65	85	100	115			
Zugbeanspruchung									
Ausführungen: IS-M-V, SW-M-E, SKK-TG-V TX, SKK-TG-V, SKK, LK-TG-V, GLK-TG-V									
Verschiebung DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	0,57	1,16			
Verschiebung ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36	2,36	4,39			
Ausführung: SK-TG-V									
Verschiebung DLS	δ _{N,C2(DLS)}	[mm]	0,66	0,32	kojno Lojetuna howertet				
Verschiebung ULS	δn,c2(ULS)	[mm]	1,74	1,36	keine Leistung bewertet				
Querbeanspruchung									
Ausführungen: IS-M-V, SW-M-E, SK (mit Durchgangsloch)	K-TG-V TX	K, SKK-7	TG-V, SKK, LK	(-TG-V, GLK-T	ſG-V				
Verschiebung DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	4,21	4,71	4,42	5,60			
Verschiebung ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	7,13	8,83	6,95	12,63			
Ausführung: SK-TG-V (mit Durchga	ingsloch)								
Verschiebung DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,51	2,98	koine Leisti	ing howertet			
Verschiebung ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	7,76	6,25	Kelile Leistu	ung bewertet			

Alfa Betonschraube	
Leistung Verschiebungen unter seismischer Beanspruchung Kategorie C2	Anhang C7